

Título oficial regulado por Real Decreto 1393/2007, de 29 de octubre

Guía docente de la asignatura

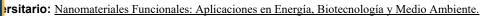
Módulo:	FUNDAMENTOS DE LA NANOTECNOLOGÍA Y DE LOS NANOMATERIALES			
Asignatura:	QUÍMICA EN LA NANOESCALA			
Código:	2202003 Carácter (obligatoria / optativa): OBLIGATORIA			
Lenguas en la	Lenguas en las que se imparte Total de créditos ECTS:			
ESPAÑOL		% docencia en [indicar lengua L2]:		
		% docencia en [indicar lengua L3]:	%	
		Ubicación temporal	1 semestre	

Profesor/a responsable	e-mail	Despacho
GERKO OSKAM	gosk@upo.es	47.B.04

Actividades formativas	Horas	% presencial	% teoría	% práctica
CLASE MAGISTRAL EN AULA	22	100	100	
CLASE PRÁCTICA EN AULA	6	100		100
(clases de problemas)				
SEMINARIOS	2	0	100	
TRABAJO AUTÓNOMO DEL	70	0	50	50
ESTUDIANTE				

Profesor/a	e-mail	Despacho
TÂNIA ISABEL LOPES DA COSTA	tlopcos@upo.es	22.3.09
BRUNO MARTÍNEZ HAYA	bmarhay@upo.es	22.3.19
GERKO OSKAM	gosk@upo.es	47.B.04

Descripción general y justificación de la relevancia de la asignatura


La asignatura se enfoca en los aspectos químicos que rigen la formación, propiedades químicas, y aplicaciones de nanomateriales, e incluye una introducción a los principios fundamentales necesarios para los módulos que siguen en el programa. En particular, se presenta un repaso del enlace químico, y se describe su influencia en la formación de moléculas, supra-moléculas, polímeros, y nanomateriales. Se discute la dimensionalidad aplicados a nanomateriales sólidos tanto compactos como porosos. La asignatura implementa conceptos de termodinámica y cinética química para describir reacciones químicas superficiales, y se aplican los conocimientos para explicar procesos de catálisis heterogéneo. Se describe en detalle como estos conceptos intervienen en métodos de síntesis de nanomateriales con propiedades controladas y su caracterización, que se profundizarán en los Módulos 3 y 2, respectivamente.

Competencias.

Competencias básicas, transversales y generales del Máster que se desarrollan en la asignatura

Se permite la verificación de la integridad de una copia	de este documento electrónico en la dirección: https://portafirmas.upo.es/verificarfirma/. Este documento incorpora
firma electrónica reconocida o cualificada de acuer	do al Reglamento (UE) Nº 910/2014 del Parlamento Europeo y del Consejo, de 23 de julio de 2014, relativo a la
identificación electrónica	y los servicios de confianza para las transacciones electrónicas en el mercado interior.

FIRMADO POR	RMADO POR Universidad Pablo de Olavide		FECHA	30/10/2023
ID. FIRMA	ID. FIRMA firma.upo.es 92JMi/MNcAayDn4XWmdNsjJLYdAU3n8j		PÁGINA	1/3

Título oficial regulado por Real Decreto 1393/2007, de 29 de octubre

CB6 - Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación

CB7 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio

Competencias específicas y resultados de aprendizaje de la asignatura

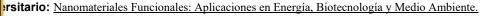
- C1. Domina los principios fundamentales físicos y químicos que rigen el comportamiento de materiales en la escala nanoscópica.
- C3. Domina los principios de la cinética de reacciones químicas y sus implicaciones en la formación de macromoléculas y nanoestructuras con dimensionalidad de 0 hasta 3.

HD1. Aplica las leyes de la termodinámica y cinética para obtener conclusiones acerca de la viabilidad de procesos fisicoquímicos, incluyendo procesos de formación, degradación, y aplicación de materiales nanoscópicos.

COM1. Identificar los comportamientos físicos, químicos y fisicoquímicos asociados a materiales estructurados en la nanoescala en contraposición a los que definen un material en el "bulk".

Contenidos

- Enlaces químicos e interacciones no covalentes: estructura de moléculas; interacciones de Van der Waals (dipolo-dipolo (inducido), ion-dipolo), enlace de H, fuerzas de London; reacciones químicas; cinética química.
- 2. Química supramolecular: reconocimiento molecular; química anfitrión-huésped; mecanismos de auto ensamblaje; películas Langmuir-Blodgett.
- 3. Nanomateriales "inversos" micro- y mesoporosos; zeolitas; redes metalo-orgánicas (MOFs); nanocarbono (fulerenos; nanotubos; grafeno); isotermas de adsorción; reacciones químicas en confinamiento.
- 4. Interacción entre nanomateriales y sistemas biológicos; toxicidad e impacto medio ambiental; aplicaciones biomédicas.
- 5. Nanoquímica en superficies: modelo TSK (*terrace-step-kink*); energía superficial; catálisis heterogénea; teoría de nucleación en superficies; mecanismos de crecimiento de películas delgadas (Frank-Van der Merwe, Volmer-Weber, Stranski-Krastanov).
- 6. Química sol-gel: mecanismos de hidrólisis y condensación; mecanismos de reducción; química de precursores; teoría de nucleación de nanopartículas; supersaturación; anisotropía y control de forma; maduración de Ostwald.


Metodología de enseñanza

Esta asignatura tendrá un carácter fundamentalmente teórico, con un total de 28 horas de clases de carácter presencial, incluyendo 6 horas dedicadas a la resolución de problemas y discusión de ejemplos. Habrá 2 seminarios especializados en temas actuales de la química en la nanoescala.

Se permite la verificación de la integridad de una copia de este documento electrónico en la dirección: https://portafirmas.upo.es/verificarfirma/. Este documento incorpora					
firma electrónica reconocida o cualificada de acuerdo al Reglamento (UE) Nº 910/2014 del Parlamento Europeo y del Consejo, de 23 de julio de 2014, relativo a la					
identificación electrónica y los servicios de confianza para las transacciones electrónicas en el mercado interior.					
EIDMADO DOD	Universided Deble de Olevide	EEGIIA	20/10/2022		

FIRMADO POR	Universidad Pablo de Olavide		FECHA	30/10/2023
ID. FIRMA	firma.upo.es	92JMi/MNcAayDn4XWmdNsjJLYdAU3n8j	PÁGINA	2/3

Título oficial regulado por Real Decreto 1393/2007, de 29 de octubre

Se compartirá material en forma de diapositivas y notas de contenidos que sirvan tanto para la realización exitosa de la asignatura como para la preparación del resto de asignaturas del máster.

Sistema de evaluación (ponderación mínima y máxima)

La asignatura se evaluará a través de tres exámenes parciales a realizar de forma online durante el periodo lectivo y un examen escrito final a realizar en la sexta semana. Los exámenes parciales valdrán el 50% de la asignatura, el examen final valdrá el otro 50% de la asignatura.

Bibliografía obligatoria

No hay

Bibliografía recomendada

- 1. Físicoquímica, P.W. Atkins y J. De Paula, 4th Edition, Oxford University Press (2003).
- 2. Introduction to Nanoscience, S.M. Lindsey, Oxford University Press (2010).
- 3. Nanochemistry, G.B. Sergeev & K.J. Klabunde, Elsevier (2013).
- 4. Core concepts in Supramolecular Chemistry and Nanochemistry. J.W. Steed, D.R. Turner, K.J. Wallace. John Wiley & Sons (2007).
- 5. Artículos especializados, entre ellos: Nanocarbono (Georgakilas 2015, doi: 10.1021/cr500304f), Zeolitas (Shamzhy 2019, doi: 10.1039/c8cs00887f). MOFs (Eddaoudi2015. 10.1039/c4cs00230j).
- 6. Arthur W. Adamson, Alice P. Gast. Physical Chemistry of Surfaces, Wiley (1997).
- 7. Sol-gel chemistry of transition metal oxides. J. Livage, M. Henry and C. Sanchez, Prog. Solid St. Chem. Vol., 18, pp. 250341, 1988.
- 8. Artículos especializados, entre ellos: Catálisis heterogenea (Zaera, 2021, doi: 10.1016/j.ccr.2021.214179), Sol-gel (Bokov et al, 2021, doi: 10.1155/2021/5102014), Química superficial (Clair & Oteyza, 2019, doi: 10.1021/acs.chemrev.8b00601).

Observacion

Se permite la verificación de la integridad de una copia de este documento electrónico en la dirección: https://portafirmas.upo.es/verificarfirma/. Este documento incorpora
firma electrónica reconocida o cualificada de acuerdo al Reglamento (UE) Nº 910/2014 del Parlamento Europeo y del Consejo, de 23 de julio de 2014, relativo a la
identificación electrónica y los servicios de confianza para las transacciones electrónicas en el mercado interior

FIRMADO POR	Universidad Pablo de Olavide		FECHA	30/10/2023
ID. FIRMA	firma.upo.es 92JMi/MNcAayDn4XWmdNsjJLYdAU3n8j		PÁGINA	3/3
11 12 12 12 12 12 12 13 13				

