1. Asignatura	Sistemas Operativos y Programación					
Carácter:	obligatoria		ECTS	5	Temporal:	C1
Lenguas impartición		Castellano				

2. Resultados de aprendizaje:

- 1. Familiarizarse con los elementos básicos de sistemas operativos *UNIX/Linux*, tanto en entornos gráficos como en la línea de comandos
- 2. Ser capaz de construir scripts para procesamiento de datos, tanto numéricos como de texto. Conocer qué es un sistema de procesado en lotes (colas) y cuando es necesario.
- 3. Conocer las herramientas básicas en Linux para el tratamiento de datos y su presentación gráfica.
- 4. Conocer los elementos fundamentales de los lenguajes de programación, en particular Fortran90 y Python.
- 5. Ser capar de construir scripts básicos en *Python* usando bibliotecas numéricas y gráficas, para resolver problemas científicos y presentar resultados.
- 6. Ser capaz de reducir un problema físico a su forma algorítmica y programarlo en Fortran90.
- 7. Familiarizarse con algún entorno gráfico de desarrollo.

3. Contenidos

3.1. Descriptores

Sistemas operativos Unix/Linux. Herramientas de análisis y presentación de datos. Lenguajes de programación: intérpretes y compiladores. Python y Fortran90/2008.

3.2. Temario

Tema 1. Introducción a los sistemas operativos: *UNIX/Linux*. Funciones de los sistemas operativos. Organización de sistemas de ficheros. Comandos básicos en Linux.

Tema 2. Intérpretes de comandos: bash/csh. Funciones del intérprete. Programación de scripts.

Tema 3. Utilidades básicas. Editores en línea y visuales. Tuberías (pipes). *Grep/awk* y otros elementos en el procesado de información.

Tema 4. Paquetes básicos de presentación y análisis de resultados en UNIX/Linux. Grace. Gnuplot.

Tema 5. Lenguajes de programación I. Intérpretes: *Phyton* básico. Estructuras de datos. Bucles y control de flujo. Estructuras de entrada/salida. Herramientas básicas de procesado de cadenas.

Tema 6. Bibliotecas científicas en *Python. Numpy/Scipy*: rutinas de cálculo numérico vectorial/matricial y escalar. *sciplot/matplotlib*: rutinas representación gráfica.

Tema 7. Lenguajes de programación II. Compiladores: *Fortran 90- Fortran 2008.* Tipos de datos y datos estructurados. Programación estructurada y programación orientada a objetos en *Fortran*: módulos, funciones, subrutinas. Control de flujo e iteradores. Vectores, matrices, punteros y operaciones matriciales intrínsecas. Entrada/salida y operaciones con cadenas de caracteres. Bibliotecas científicas: *Atlas/MathKernel, FFTW*.

Tema 8. Entornos gráficos de desarrollo. Eclipse.

3.3. Bibliografía

- 1. D. J. Barret, Linux Pocket Guide, 3rd Edition, Essential Commands (O'Reilly Media, 2016).
- 2. P. Cobbaur, Linux Fundamentals, http://linux-training.be/linuxfun.pdf
- 3. Python Crash Course, Eric Matthes (Nostarch Press, 2015).
- 4. E. Bressert, SciPy and NumPy (O'Reilly Media, 2012).
- 5. R.J. Hanson y T. Hopkins, Numerical Computing with Modern Fortran, (SIAM, 2013).

4. Observacione	s:			
5. Competencias	s:			
5.1. Básicas y generales	Generales	CG2		
	Básicas	CB6, CB7, CB9, CB10		
5.2. Transversales CT2, CT3, CT4, CT5, CT6		4, CT5, CT6		
5.3. Específicas CE1, CE2, CE		3, CE4, CE11		
6. Actividades fo	ormativas			
Actividades forn	nativas		Horas	Presencialidad (%)

Actividades dirigidas (clases expositivas, clases de	35	100
problemas y talleres de programación)		
Actividades supervisadas (tutorías individuales y	30	50
colectivas y trabajos tutelados)		
Actividades autónomas (realización de problemas,	60	0
programas y estudio personal)		
Total	125	-

7. Metodologías docentes

Tipo de metodología	Denominación
---------------------	--------------

- MD1. Clases expositivas mediante Adobe Connect
- MD3. Talleres de programación a través de Adobe Connect
- MD4. Tutorías individuales y/o colectivas programadas
- MD5. Trabajos tutelados (proyectos, programas, etc.)
- MD7. Realización de programas computacionales.

MD8. Estudio personal (lectura de bibliografía recomendada, realización de cuestionarios, tests y exámenes preparatorios vía el *Moodle* del Campus Virtual, uso y estudio de códigos computacionales de la biblioteca de la Red Española de Simulación Molecular, etc.)

8. Sistemas de evaluación	Pond. Mínima	Pond. Máxima
Participación activa en el desarrollo de la materia mediante teledocencia (<i>Adobe Connect</i>) y Campus Virtual (<i>Moodle</i>) (uso del chat, foros, e-mail, etc.)	0	0.2
Realización de problemas y/o programas computacionales, por escrito, sobre los contenidos de la asignatura	0.2	0.4
Pruebas escritas de evaluación mediante el uso del Campus Virtual (Moodle)	0.2	0.4
Resolución de cuestionarios y tests de evaluación a través del Campus Virtual (<i>Moodle</i>)	0.2	0.4