1. Asignatura	Métodos numéricos					
Carácter:	obligatoria		ECTS	5	Temporal:	C2
Lenguas impartición		Castellano				

2. Resultados de aprendizaje:

- 1. Conocer los algoritmos básicos necesarios para formular numéricamente problemas físico-matemáticos, incluyendo interpolación, diferenciación, integración, resolución de ecuaciones algebraicas y diferenciales, etc.
- 2. Familiarizarse con la bibliografía básica de métodos numéricos.
- 3. Ser capaz de formular un problema físico en términos algorítmicos y plantear el método numérico adecuado para su resolución.
- 4. Conocer los principios básicos de la programación en paralelo.
- 5. Analizar las ventajas/inconvenientes de la paralelización de un algoritmo para la resolución de problema físico determinado.

3. Contenidos

3.1. Descriptores

Métodos numéricos básicos (interpolación, diferenciación, integración). Resolución numérica de ecuaciones algebraicas y diferenciales. Modelización de sistemas físicos. Análisis y transformadas de Fourier. Algoritmos paralelos y su implementación.

3.2. Temario

- Tema 1. Métodos básicos de interpolación y diferenciación.
- Tema 2. Métodos de integración. Métodos de intervalo regular. Métodos gaussianos.
- Tema 3. Integración multidimensional. Integración regular. Integración estocástica.
- Tema 4. Resolución de sistemas lineales por métodos iterativos.
- Tema 5. Resolución de ecuaciones y sistemas no lineales.
- **Tema 6. Ecuaciones diferenciales ordinarias y sistemas de ecuaciones.** Elementos de análisis de estabilidad. Métodos numéricos de solución de sistemas de ecuaciones.
- **Tema 7. Ejemplos de modelización de sistemas dinámicos con ecuaciones diferenciales.** Dinámica de poblaciones. Dinámica de N-cuerpos.
- **Tema 8. Transformadas de Fourier.** Aplicaciones básicas: análisis de frecuencias, filtros de ruido y factores de estructura. La resolución experimental: Convolución y transformadas de Fourier. Transformadas discretas: condiciones de ortogonalidad. Métodos de cálculo: transformación directa y FFT
- **Tema 9. Elementos de programación en paralelo.** Paradigmas de programación: MPI/OpenMP/CUDA. Elementos básicos de MPI

3.3. Bibliografía

- 1. Computational Physics, J. Thijssen, (Cambridge Univ. Press, 2007).
- 2. Numerical Computing with Modern Fortran, R.J. Hanson & T. Hopkins (SIAM, 2013).
- 3. Numerical Recipes 3rd Edition: The Art of Scientific Computing, William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian
- P. Flannery, (Cambridge Univ. Press, 2007).

Generales

4. Observaciones:

5. Competencias:			
5.1. Básicas y			

generales

Básicas	CB6, CB7, CB9, CB10

CG2

5.2. Transversales CT2, CT3, CT4, CT5, CT6 5.3. Específicas CE1, CE2, CE3, CE4, C5, CE11

6. Actividades formativas

Actividades formativas	Horas	Presencialidad (%)	
Actividades dirigidas (clases expositivas, clases de	30	100	
problemas y talleres de programación)			
Actividades supervisadas (tutorías individuales y	40	50	
colectivas y trabajos tutelados)			
Actividades autónomas (realización de problemas,	55	0	

programas y estudio personal)				
Total	125	-		
7. Metodologías docentes				
Tipo de metodología	Denominación			

- MD1. Clases expositivas mediante Adobe Connect
- MD3. Talleres de programación a través de *Adobe Connect*
- MD4. Tutorías individuales y/o colectivas programadas
- MD5. Trabajos tutelados (proyectos, programas, etc.)
- MD7. Realización de programas computacionales.

MD8. Estudio personal (lectura de bibliografía recomendada, realización de cuestionarios, tests y exámenes preparatorios vía el *Moodle* del Campus Virtual, uso y estudio de códigos computacionales de la biblioteca de la Red Española de Simulación Molecular, etc.)

8. Sistemas de evaluación	Pond. Mínima	Pond. Máxima
Participación activa en el desarrollo de la materia mediante teledocencia (<i>Adobe Connect</i>) y Campus Virtual (<i>Moodle</i>) (uso del chat, foros, e-mail, etc.)	0	0.2
Realización de problemas y/o programas computacionales, por escrito, sobre los contenidos de la asignatura	0.2	0.4
Pruebas escritas de evaluación mediante el uso del Campus Virtual (Moodle)	0.2	0.4
Resolución de cuestionarios y tests de evaluación a través del Campus Virtual (Moodle)	0.2	0.4