1. Asignatura	Dinámica molecular avanzada					
Carácter:	obligatoria		ECTS	5	Temporal:	C2
Lenguas impartición		Castellano				

2. Resultados de aprendizaje:

- 1. Entender los fundamentos de la mecánica clásica de sistemas conservativos en su formulación lagrangiana y hamiltoniana.
- 2. Conocer distintos métodos de resolución numérica de las ecuaciones de evolución de la mecánica clásica.
- 3. Entender la conexión entre la descripción microscópica y macroscópica de un sistema molecular.
- 4. Determinar las propiedades de equilibrio de sistemas moleculares en distintos colectivos.
- 5. Determinar las propiedades de transporte en sistemas moleculares.
- 6. Caracterizar computacionalmente el comportamiento de sistemas moleculares fuera del equilibrio.
- 7. Profundizar en las habilidades de programación necesarias para implementar y ejecutar códigos de Dinámica Molecular.
- 8. Saber identificar la metodología más apropiada para la obtención de cada propiedad de interés de un sistema molecular.

3. Contenidos

3.1. Descriptores

Mecánica analítica. Dinámica Molecular en distintos colectivos: NVE, NVT, NpT. Simulaciones moleculares de no-equilibrio. Coeficientes de transporte. Simulación de sistemas arrestados. Introducción a la simulación molecular cuántica de sistemas condensados. Simulación multiescala.

3.2. Temario

Tema 1. Introducción. El formalismo de la mecánica analítica. La descripción de Lagrange: el espacio configuracional y las ecuaciones de Euler-Lagrange. La descripción de Hamilton: el espacio de las fases y las ecuaciones de Hamilton. Transformaciones canónicas. La ecuación de Liouville.

Tema 2. Esquemas numéricos. Introducción a los métodos de diferencias finitas. El método predictor-corrector. Los métodos simplécticos en sistemas hamiltonianos: el algoritmo de Verlet. Aplicación a sistemas moleculares: dinámica molecular de moléculas rígidas no esféricas y en presencia de ligaduras (algoritmo SHAKE). Dinámica molecular de sistemas duros.

Tema 3. Dinámica Molecular en diferentes colectivos. Dinámica molecular a temperatura constante: el colectivo isocinético, el termostato de Andersen y el termostato de Nosé-Hoover. Cadenas de Nosé-Hoover. Dinámica Molecular en el colectivo isotermo-isobaro: el algoritmo de Hoover, de Melchionna-Ciccoti-Holian y de Martyna-Tobias-Klein. El método de Rahman-Parrinello.

Tema 4. Tópicos avanzados. Cálculo de coeficientes de transporte. Relaciones de Green-Kubo. Dinámica Molecular de No Equilibrio. Factores de estructura dinámica. Sistemas cuánticos: el algoritmo de Car-Parrinello.

Tema 5. Introducción a la simulación multiescala. Introducción. Modelos mecánico cuánticos. Formulación de *Path integral*. Modelos *coarse-grained*. Modelos mesoscópicos. Métodos de Lattice-Bolztamnn y Dissipative Particle Dynamics. Modelos continuos. Las ecuaciones de Navier-Stokes.

3.3. Bibliografía

- 1. M. Allen and D. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.
- 2. D. Frenkel and B. Smit, *Understanding Molecular Simulation*, 2nd Edition, Academic Press, San Diego, 2002.
- 3. D. C. Rapaport, *The art of of molecular dynamics simulations*, 2nd Edition, Cambridge University Press, Cambridge, 2011.
- 4. M. Griebel, S. Knapek and G. Zumbusch, *Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications*
- 5. B. D. Todd and P. J. Daivis, Nonequilibrium Molecular Dynamics. Theory, algorithms and applications.

4. Observaciones:

			•
			ıcias:
J. LU	ш	CLCI	ıcıas.

5.1. Básicas y generales	Generales	CG1, CG2, CG3, CG4	
generales	Básicas	CB6, CB7, CB8, CB9, CB10	
5.2. Transversales		CT2, CT3, CT4, CT5, CT6	
5.3. Específicas		CE1, CE2, CE3, CE4, CE5, CE6, CE7, CE8, CE9, CE10, CE11	

6. Actividades formativas

Actividades formativas	Horas	Presencialidad (%)	
AF1-Actividades dirigidas (clases expositivas,	30	100	
clases de problemas y talleres de programación)			
AF2. Actividades supervisadas (tutorías	40	50	
individuales y colectivas y trabajos tutelados)			

AF3. Actividades autónomas (realización de	55	0		
problemas, programas y estudio personal)				
Total	125	-		
7. Metodologías docentes				

- MD1. Clases expositivas mediante Adobe Connect.
- MD3. Talleres de programación a través de Adobe Connect.
- MD4. Tutorías individuales y/o colectivas programadas.
- MD5. Trabajos tutelados (proyectos, programas, etc.).
- MD7. Realización de programas computacionales.

MD8. Estudio personal (lectura de bibliografía recomendada, realización de cuestionarios, tests y exámenes preparatorios vía el Moodle del Campus Virtual, uso y estudio de códigos computacionales de la biblioteca de la Red Española de Simulación Molecular, etc.)

8. Sistemas de evaluación	Pond. Mínima	Pond. Máxima
Participación activa en el desarrollo de la materia mediante teledocencia (<i>Adobe Connect</i>) y Campus Virtual (<i>Moodle</i>) (uso del chat, foros, e-mail, etc.)	0	0.2
Realización de problemas y/o programas computacionales, por escrito, sobre los contenidos de la asignatura	0.2	0.4
Pesolución de cuestionarios y tests de evaluación a través del Campus Virtual (<i>Moodle</i>)	0.2	0.4
Elaboración v/o presentación oral de trabajos de la asignatura (Moodle)	0.2	0.4