Skip to main content
  • Másteres oficiales /
  • Ciencias. /
  • 7075

Máster Universitario en Simulación Molecular

Director del máster: Felipe Jiménez de Blas.   Universidad de Huelva

Coordinación: José Manuel Miguez Díaz. Universidad de Huelva

  • en docencia
Universidad coordinadora: UNIA
¿Quieres más información?

Déjanos tus datos y te informaremos de los plazos, becas y novedades de esta formación.

  • Desde: 30 Octubre 2023
  • Hasta: 23 Abril 2024
  • Virtual
  • Castellano
  • 20 plazas UNIA

Formación Especializada en Simulación Molecular y Computación Científica Avanzada

El título tiene como objetivo fundamental formar a estudiantes de grado de algunas titulaciones de la Rama de Ciencias, especialmente de Ciencias Físicas y Químicas, algunas ingenierías de la Rama de Ingeniería y Arquitectura y también, aunque en menor medida, de la Rama de Ciencias de la Salud, en las más modernas técnicas de simulación molecular y computación científica avanzada de alto rendimiento. Esta formación avanzada, y al mismo tiempo específica propia de unos estudios de máster, les permitirá afrontar con éxito la realización de una tesis doctoral en grupos de investigación cuya temática se enfoque en este campo científico o en industrias con fuerte componente innovador.

La Revolución de la Simulación Molecular en la Ciencia y Tecnología

La simulación molecular es considerada hoy en día uno de los pilares en los que se fundamenta la creación de conocimiento en el ámbito científico y tecnológico. De hecho, la simulación molecular es considerada la tercera forma de hacer ciencia junto con la teoría y los experimentos. Desde las primeras simulaciones llevadas a cabo en los años 30 y 40, en el contexto del estudio de la difusión de neutrones en materiales fisionables (dentro del conocido Proyecto Manhattan) hasta nuestros días, la simulación ha sufrido una transformación radical desde todos los puntos de vista. La enorme evolución del hardware disponible, el uso de algoritmos matemáticos y computacionales más eficientes, en notable consonancia con el hardware actual (Computación de Alto Rendimiento o HPC, del inglés High-Performance Computing mediante CPUs y GPUs), y el desarrollo de nuevas técnicas avanzadas de simulación, están posibilitando elaborar, desde una perspectiva microscópica, modelos realistas de moléculas complejas y materiales, diseño de procesos (de fabricación) físicos y químicos, etc.

La simulación por ordenador es por tanto una potente herramienta científica que permite modelar procesos a escala atómica en disciplinas científicas y tecnológicas de ámbitos muy diferentes. El estudio y caracterización de la adsorción en materiales porosos estructurados, la adsorción de reactivos sobre catalizadores, el comportamiento de fluidos iónicos y cristales líquidos, el estudio microscópico de sistemas biológicos complejos, como el ADN o las membranas celulares, el análisis del plegamientos de proteínas y el diseño de fármacos, entre otros, son tan sólo algunos ejemplos en el contexto de la Condensed Matter o Materia Condensada para los que la simulación molecular puede ofrecer respuestas y soluciones desde una perspectiva microscópica.

Este máster se realiza en colaboración con la Universidad de Huelva.

El título que se presenta tiene como objetivo fundamental formar a estudiantes de grado de algunas titulaciones de la Rama de Ciencias, de Ingeniería y Arquitectura y de Ciencias de la Salud, para que éstos adquieran conocimientos avanzados en técnicas y metodologías en el ámbito de la simulación molecular clásica. Esta formación avanzada, y al mismo tiempo específica propia de unos estudios de máster, les permitirá afrontar con éxito la realización de una tesis doctoral en grupos de investigación cuya temática se enfoque en este campo científico.

Se trata, obviamente, de un título cuyos contenidos íntegros caen fuera del ámbito de cualquier título de grado dentro y fuera de nuestras fronteras. Si bien es cierto que algunos aspectos y contenidos del mismo se podrían cursar en algunos grados existentes en la oferta de las universidades españolas y del Espacio Común Europeo, éstos se imparten únicamente a un nivel básico, insuficientes para iniciar con éxito una formación de posgrado. Asimismo, enfrentarse a la realización de una tesis doctoral en el ámbito de la simulación molecular requiere una formación íntegra en diferentes disciplinas y aspectos muy diversos, que van desde la Mecánica Estadística y la Termodinámica, pasando por el dominio de técnicas matemáticas y numéricas avanzadas, sin dejar atrás el uso de sistemas operativos basados en el estándar UNIX/Linux, lenguajes de programación avanzados (Fortran C, C++, Phyton y Perl, entre otros), uso de paquetes comerciales de simulación, bien sean propietarios y/o de libre distribución (DL_POLY, LAMMPS, GROMACS y HooMD, entre otros muchos), etc. Obviamente, esta gran diversidad de conocimientos, técnicas y habilidades no se pueden adquirir con la profundidad necesaria sin la existencia de un título de máster específicamente diseñado para cubrir estas necesidades.

Dado el carácter específico y técnico de la simulación molecular, se hace preciso explicar brevemente en qué consiste este conjunto de técnicas y herramientas que en las últimas décadas se ha vuelto casi imprescindible en la forma de hacer Ciencia. Es importante matizar, puesto que repercute directamente en el éxito de esta propuesta como se pondrá de manifiesto a lo largo de este documento, que este ascenso en el uso y desarrollo de la simulación numérica en general, y de la simulación molecular en particular, se ha producido gracias a la enorme expansión que ha experimentado el sector tecnológico de la electrónica y computación a nivel mundial.

La simulación molecular es considerada hoy en día uno de los pilares en los que se fundamenta la creación de conocimiento en el ámbito científico y tecnológico. De hecho, la simulación molecular es considerada la tercera forma de hacer ciencia junto con la teoría y los experimentos. Desde las primeras simulaciones llevadas a cabo en los años 30 y 40, en el contexto del estudio de la difusión de neutrones en materiales fisionables (dentro del conocido Proyecto Manhattan) hasta nuestros días, la simulación ha sufrido una transformación radical desde todos los puntos de vista. La enorme evolución del hardware disponible, el uso de algoritmos matemáticos y computacionales más eficientes, en notable consonancia con el hardware actual (Computación de Alto Rendimiento o HPC, del inglés High-Performance Computing), y el desarrollo de nuevas técnicas avanzadas de simulación, están posibilitando elaborar, desde una perspectiva microscópica, modelos realistas de moléculas complejas y materiales, diseño de procesos (de fabricación) físicos y químicos, etc. Todo ello está permitiendo plantear, investigar y resolver problemas científicos y tecnológicos en ámbitos muy diferentes inimaginables hasta hace unos años. La determinación de propiedades interfaciales de fluidos complejos y sus mezclas, el estudio y caracterización de la adsorción en materiales porosos estructurados, el comportamiento de fluidos iónicos y cristales líquidos o el estudio microscópico de sistemas biológicos complejos, como el ADN o las membranas celulares, entre otros, son tan sólo algunos ejemplos en el contexto de la Condensed Matter o Materia Condensada para los que la simulación molecular tiene hoy en día (o en un futuro cercano tendrá) un conocimiento preciso de sus propiedades y comportamiento a nivel microscópico.

La importancia de la simulación molecular en este contexto es aún más cuantificable cuando se analiza detenidamente el entorno investigador en el que nuestro país está inmerso, el Espacio Europeo de Investigación. Entre los ejemplos más notables y recientes de los esfuerzos dirigidos a potenciar la simulación molecular en este contexto destacan el CECAM, y otros más novedosos y específicos, como el caso del programa SimBioMa.

Perfil de ingreso y egreso

a) Perfil de Ingreso

El Perfil de Ingreso general para el acceso al máster vendrá determinado por el reconocimiento, en el aspirante, de una serie de cualidades académicas y personales que permitan el desarrollo de las competencias contempladas en el programa de estudios. Así, dicho perfil contempla una doble vertiente de capacidades e intereses que se manifiestan del siguiente modo.

Perfil personal: El máster está diseñado para acoger a estudiantes interesados en adquirir conocimientos teóricos y prácticos en el ámbito de la Simulación Molecular clásica. En particular, el objetivo último del título es formar a estos estudiantes para que puedan afrontar con éxito la realización de una tesis doctoral en Simulación Molecular, por lo que claramente el título está orientado a futuros investigadores. Es por ello que este máster está dirigido hacia alumnos con una curiosidad innata por conocer cómo una descripción microscópica de sistemas complejos en materia condensada es capaz de predecir el comportamiento macroscópico de éstos, con espíritu crítico e innovador para desarrollar nuevas teorías y algoritmos para resolver problemas complejos en el ámbito de la Simulación Molecular, y con capacidad de trabajo y habilidad para trabajar en el seno de un grupo de investigación.

Perfil académico: Éste vendrá determinado por la posesión de estudios universitarios previos, Licenciados, Graduados o Diplomados en titulaciones de las ramas de Ciencias e Ingeniería y Arquitectura. Eventualmente, también podrá considerarse como perfil de ingreso el de licenciados, graduados o diplomados procedentes de algunas titulaciones de la rama de Ciencias de la salud. Tal y como recoge la Normativa en vigor, para acceder a las enseñanzas oficiales de Máster será necesario estar en posesión de un título universitario oficial español u otro expedido por una institución de educación superior perteneciente a otro Estado integrante del Espacio Europeo de Educación Superior que faculte en el mismo para el acceso a enseñanzas de Máster, según se contempla en el Real Decreto 1393/2007, de 29 de octubre, por el que se establece la ordenación de las enseñanzas universitarias oficiales, así como los Reales Decretos 861/2010, de 2 de julio y 43/2015, por los que se modifica el anterior.

En concreto, el Máster está diseñado para que puedan acceder directamente los alumnos que cuenten con formación fundamentalmente en la Rama de Ciencias. No obstante, y dado el carácter multidisciplinar y a la vez específico del Título, también se permitirá el acceso de alumnos con formación en las Ramas de Ingeniería y Arquitectura y de Ciencias de la Salud. Para llevar a cabo esta adscripción, y tratándose de un máster de especialización hemos recogido en primer lugar las titulaciones ordenadas por orden de preferencia (alta, media y baja):

Titulaciones con preferencia ALTA:

- Grado en Ciencias Ambientales.
- Grado en Física.
- Grado en Geología.
- Grado en Ingeniería Aerospacial.
- Grado en Ingeniería Aerospacial en aeronaves.
- Grado en Ingeniería Ambiental.
- Grado en Ingeniería de Materiales.
- Grado en Ingeniería de Procesos Químicos Industriales.
- Grado en Ingeniería Química.
- Grado en Ingeniería Química Industrial.
- Grado en Ingeniería Tecnología Industrial.
- Grado en Ingeniería Tecnologías Industriales.
- Grado en Química.
- Grado en Tecnologías Industriales.
- Ingeniero Aeronáutico.
- Ingeniero de Materiales.
- Ingeniero Industrial.
- Ingeniero Químico.
- Licenciado en Ciencias Ambientales.
- Licenciado en Física.
- Licenciado en Geología.
- Licenciado en Química.

Titulaciones con preferencia MEDIA:

- Grado en Biología.
- Grado en Bioquímica.
- Grado en Bioquímica y Biología Molecular.
- Grado en Bioquímica y Ciencias Biomédicas.
- Grado en Biotecnología.
- Grado en Ingeniería de Computadores.
- Grado en Ingeniería Informática.
- Grado en Ingeniería Informática – Ingeniería Computadores.
- Grado en Ingeniería Informática – Ingeniería Software.
- Grado en Ingeniería Informática – Ingeniería Tecnologías Informáticas.
- Grado en Ingeniería Informática del Software.
- Grado en Ingeniería Matemática.
- Grado en Ingeniería del Software.
- Grado en Matemática Computacional.
- Grado en Matemáticas.
- Grado en Matemáticas y Estadística.
- Ingeniero en Informática.
- Licenciado en Biología.
- Licenciado en Bioquímica.
- Licenciado en Biotecnología.
- Licenciado en Ciencias (Informática).
- Licenciado en Matemáticas.

Titulaciones con preferencia BAJA:

- Grado en Ciencias del Mar.
- Grado en Ingeniería Agraria.
- Grado en Ingeniería Agraria y del Medio Rural.
- Grado en Ingeniería Agrícola.
- Grado en Ingeniería Agrícola y del Medio Rural.
- Grado en Ingeniería Agroalimentaria.
- Grado en Ingeniería Agroalimentaria y Agroambiental.
- Grado en Ingeniería Agroalimentaria y de Sistemas Biológicos.
- Grado en Ingeniería Agroalimentaria y del Medio Rural.
- Grado en Ingeniería Agroambiental.
- Grado en Ingeniería Agroambiental y del Paisaje.
- Grado en Ingeniería Agropecuaria y del Medio Rural.
- Grado en Ingeniería Alimentaria.
- Grado en Ingeniería Civil.
- Grado en Ingeniería Civil – Hidrología.
- Grado en Ingeniería Diseño Mecánico.
- Grado en Ingeniería Eléctrica.
- Grado en Ingeniería Electrónica.
- Grado en Ingeniería Electrónica de Comunicaciones.
- Grado en Ingeniería Electrónica de Telecomunicaciones.
- Grado en Ingeniería Electrónica Industrial.
- Grado en Ingeniería Electrónica Industrial y Automática.
- Grado en Ingeniería Electrónica, Robótica y Mecatrónica.
- Grado en Ingeniería Electrónica y Automática.
- Grado en Ingeniería Electrónica y Automática Industrial.
- Grado en Ingeniería Energía.
- Grado en Ingeniería Explotación de Minas y Recursos Energéticos.
- Grado en Ingeniería Explotaciones Agropecuarias.
- Grado en Ingeniería Forestal.
- Grado en Ingeniería Forestal: Industrias Forestales
- Grado en Ingeniería Forestal y del Medio Rural.
- Grado en Ingeniería Forestal y del Medio Rural – Explotaciones Forestales.
- Grado en Ingeniería Industrias Agrarias y Alimentarias.
- Grado en Ingeniería Industrias Agroalimentarias.
- Grado en Ingeniería Mecánica.
- Grado en Ingeniería Mecatrónica.
- Grado en Ingeniería de Minas.
- Grado en Ingeniería de Obras Públicas en Hidrología.
- Grado en Ingeniería Recursos Energéticos.
- Grado en Ingeniería Recursos Energéticos, Combustibles y Explosivos.
- Grado en Ingeniería Recursos Minerales y Energía.
- Grado en Ingeniería Recursos Mineros.
- Grado en Ingeniería Recursos Mineros y Energéticos.
- Grado en Ingeniería Tecnología de Minas y Energía.
- Grado en Ingeniería Tecnología Minera.
- Grado en Ingeniería Tecnologías Mineras.
- Grado en Ingeniería y Ciencia Agronómica.
- Grado en Ingeniero en Economía Forestal.
- Grado en Recursos Energéticos y Mineros.
- Grado en Tecnología de las Industrias Agrarias y Alimentarias.
- Ingeniero Agrónomo.
- Ingeniero de Minas.
- Ingeniero de Montes.
- Ingeniero Técnico Industrial, Especialidad en Electricidad.
- Ingeniero Técnico Industrial, Especialidad en Electrónica Industrial.
- Ingeniero Técnico Industrial, Especialidad en Mecánica.
- Licenciado en Ciencias del Mar.

No obstante, como ya se ha mencionado previamente y dada la transversalidad del máster propuesto, podrá valorarse la admisión de alumnos con titulaciones equivalentes o afines, así como las Diplomaturas y las titulaciones extranjeras equivalentes o afines.

b) Perfil de egreso

Como ya se ha mencionado en el apartado 2 de esta memoria (2. Justificación, adecuación de la propuesta y procedimientos), se trata de un título extremadamente especializado cuyos contenidos íntegros permitirán a los alumnos egresados realizar una tesis doctoral en el ámbito de la simulación molecular. Para ello, se han elegido cuidadosamente los contenidos de todos los temas para que el plan de estudios no contenga asignaturas optativas. Esto supone que se imparten todos los cometidos necesarios, incluyendo fundamentos, metodologías y técnicas, para que los estudiantes puedan realizar un Trabajo Fin de Máster o Trabajo de Investigación, que les capacite para iniciar su tesis doctoral en un grupo de investigación. En dicha etapa posterior, los estudiantes habrán adquirido las competencias y habilidades precisas, de acuerdo a las competencias y resultados de aprendizaje descritos en los apartados 3 y 5 de esta memoria, respectivamente, para dirigir su actividad investigadora al campo concreto de la simulación molecular que ellos elijan.

Actividades de acogida

Según establece la Ley Orgánica 6/2001, de 21 de diciembre, de Universidades, en su artículo 46.2.e), uno de los derechos de los estudiantes hace referencia al “asesoramiento y asistencia por parte de los profesores y tutores en el modo que se determine”. En este marco se reconoce la importancia de las labores de orientación y tutorización dentro del sistema universitario actual. Este Máster incide particularmente en la necesidad, dentro de una universidad moderna y cada vez mejor orientada en su labor de proyección social, de procurar medios de atención a los usuarios, tanto reales como potenciales, para con ello potenciar la cercanía a los estudiantes mediante la tutorización curricular y el apoyo académico personalizado, así como establecer mecanismos para su orientación profesional hacia el ámbito de la investigación. Para ello, se pretenden implicar a los distintos agentes de la universidad para de este modo conseguir una formación lo más integral del alumno.

 

Antes de pasar a la orientación que el alumno recibirá una vez esté matriculado, el personal de administración y servicios, tanto de la UNIA y como de la UHU, proporcionará al estudiante todo el apoyo administrativo necesario para realización óptima del proceso de admisión y matriculación por medio de atención presencial en el campus universitario, telefónica y por correo electrónico, con información guiada en la red para la matriculación on-line.

Una vez matriculado el alumnado, la Comisión Académica del Máster desarrollará anualmente dos actividades conjuntas para orientar al alumnado. A continuación se describen estas dos actividades cruciales para el adecuado encauzamiento del nuevo alumnado hacia la consecución de su título de máster.

  •  Sesión de acogida. Se trata de una reunión con todos los estudiantes de nuevo ingreso que se llevará a cabo presencialmente mediante videoconferencia haciendo uso de la tecnología Adobe Connect. En esta primera sesión, se informará de la estructura y características del título, indicando los principales aspectos que deben tener en cuenta al inicio del mismo. En particular, se hará especial hincapié en los principales cambios que experimentarán con respecto a los estudios de Grado y se informará al alumnado de aspectos directamente relacionados con los estudios escogidos, tales como:

 

-          Presentación General del Máster.

-          Estructura del mismo.

-          Metodología de desarrollo.

-          Sistema de evaluación.

-          Consejos prácticos para el estudiante.

Materiales humanos

Materiales humanos

  • Plan de estudios

    Para la obtención del título, el alumnado ha de cursar un total de 60 créditos, que corresponden con los indicados en la tabla inferior.

     

    MÓDULOS ASIGNATURAS CRED. TIPOLOGÍA
    Fundamentos básicos (10 ECTS) BASES FÍSICAS Y QUÍMICAS DE LA TERMODINÁMICA 5 Obligatoria
    BASES FÍSICAS Y QUÍMICAS DE LA MECÁNICA ESTADÍSTICA 5
    Metodologías computacionales (10 ECTS) SISTEMAS OPERATIVOS Y PROGRAMACIÓN 5
    MÉTODOS NUMÉRICOS 5
    Técnicas de Simulación (20 ECTS) MÉTODOS BÁSICOS DE SIMULACIÓN MOLECULAR 5
    DINÁMICA MOLECULAR AVANZADA 5
    MONTE CARLO AVANZADO 5
    PAQUETES DE SIMULACIÓN MOLECULAR 5
    Trabajo Fin de Máster TRABAJO FIN DE MÁSTER (Guía| Proceso Gestión | Elaboración TFM) 20 Trabajo Fin de Máster

    La docencia impartida y materiales aportados serán en castellano.


  • Director del máster: Felipe Jiménez de Blas.   Universidad de Huelva

    Coordinación: José Manuel Miguez Díaz. Universidad de Huelva

    MÓDULO I, FUNDAMENTOS FÍSICOS Y QUÍMICOS.

    A1. Bases físicas y químicas de la Termodinámica.

    1. Julio Largo Maeso.   Profesor Titular (Lic. en Física) de Universidad del Área de Física Aplicada de la Universidad de Cantabria. Posee 3 sexenios de investigación y 3 quinquenios de docencia. Ha participado en 10 proyectos de investigación. Ha publicado 26 artículos científicos.
    2. Felipe Jiménez Blas (director del máster) .
    Catedrático de Universidad (Lic. en Física) del Área de Física Aplicada de la Universidad de Huelva. Posee 4 sexenios de investigación y 5 quinquenios de docencia. Ha participado en 25 proyectos de investigación. Ha dirigido 5 tesis doctorales y publicado 97 artículos científicos.


    A2. Bases físicas y químicas de la Mecánica Estadística.

    3. José Manuel Romero Enrique (responsable).  Catedrático de Universidad (Lic. en Física) del Área de Física Teórica de la Universidad de Sevilla. Posee 3 sexenios de investigación y 4 quinquenios de docencia. Ha participado en 23 proyectos de investigación. Ha dirigido 2 tesis doctorales y publicado 35 artículos científicos.
    4. Felipe Jiménez Blas (director del máster) .
    Catedrático de Universidad (Lic. en Física) del Área de Física Aplicada de la Universidad de Huelva. Posee 4 sexenios de investigación y 5 quinquenios de docencia. Ha participado en 25 proyectos de investigación. Ha dirigido 5 tesis doctorales y publicado 83 artículos científicos.

     MÓDULO II, METODOLOGÍAS.

    A3. Sistemas operativos y programación.

    5. Enrique Lomba García  (responsable). Profesor de Investigación (Lic. en Química) del Instituto de Química-Física Rocasolano del CSIC de Madrid. Posee 5 sexenios de investigación. Ha participado en 15 proyectos de investigación. Ha dirigido 11 tesis doctorales y publicado 120 artículos científicos.
    6. José Manuel Míguez Díaz. Profesor Titular de Universidad (Lic. en Física) del Área de Física Aplicada de la Universidad de Cantabria. Ha participado en 14 proyectos de investigación. Posee 2 sexenios de investigación y 2 quinquenios de docencia. Ha dirigido 1 tesis doctoral y publicado 20 artículos científicos.

    A4. Métodos numéricos.

    7. Enrique de Miguel Agustino (responsable). Catedrático de Universidad (Lic. En Física) del Área de Física Teórica de la Universidad de Huelva. Posee 5 sexenios de investigación y 5 quinquenios de docencia. Ha participado en 16 proyectos de investigación. Ha dirigido 2 tesis doctorales y publicado 80 artículos científicos.
    8. Iván M. Zerón Jiménez. Investigador posdoctoral (Lic. en Física) de la Universidad de Guanajuato (México). Posee el equivalente a 2 sexenios de investigación. Ha participado en 4 proyectos de investigación. Ha publicado 10 artículos científicos.

    MÓDULO III, TÉCNICAS DE SIMULACIÓN MOLECULAR.

    A5. Métodos básicos de simulación molecular.

    9. Manuel Martínez Piñeiro (responsable). Catedrático de Universidad (Lic. en Física) del Área de Física Aplicada de la Universidade de Vigo. Posee 4 sexenios de investigación y 4 quinquenios de docencia. Ha participado en 23 proyectos de investigación. Ha dirigido 9 tesis doctorales y publicado 120 artículos científicos.
    10. Paula Gómez Álvarez.

    A6. Monte Carlo avanzado.

    11. Eva González Noya (responsable). Científico Titular (Lic. en Física) del Instituto de Química-Física Rocasolano del CSIC de Madrid. Posee 3 sexenios de investigación. Ha participado en 16 proyectos de investigación. Ha dirigido 2 tesis doctorales y publicado 65 artículos científicos.
    12. Andrés Mejía Matallana. Catedrático de Universidad (Tit. en Ingeniería Química) del Área de Ingeniería Química de la Universidad de Concepción (Chile). Posee el equivalente a 4 sexenios de investigación y 4 quinquenios de docencia. Ha participado en 21 proyectos de investigación. Ha dirigido 6 tesis doctorales y publicado 85 artículos científicos.
    13. Guillermo Zarragoicoechea.  Catedrático de Universidad (Lic. en Física) del Área de Física de la Universidad Nacional de la Plata (Argentina). Posee el equivalente 5 sexenios de investigación y 6 quinquenios de docencia. Ha participado en 8 proyectos de investigación. Ha dirigido 4 tesis doctorales y publicado 45 artículos científicos.

    A7. Dinámica molecular avanzada.

    14. Luis González MacDowell (responsable). Profesor Titular (Lic. en Química) de Universidad del Área de Química-Física de la Universidad Complutense de Madrid. Posee 4 sexenios de investigación y 4 quinquenios de docencia. Ha participado en 19 proyectos de investigación. Ha dirigido 3 tesis doctorales y publicado 80 artículos científicos.
    15. José Alejandre Ramírez . Catedrático de Universidad (Lic. en Química) del Área de Química de la Universidad Autónoma Metropolitana Iztapalapa (México). Posee el equivalente a 6 sexenios de investigación y 6 quinquenios de docencia. Ha participado en 5 proyectos de investigación. Ha dirigido 6 tesis doctorales y publicado 95 artículos científicos.
    16. Alessandro Patti . Investigador María Zambrano Senior (Tit. en Ingeniería Química) de la Universidad de Granada. Posee 3 sexenios de investigación y 3 quinquenios de docencia. Ha participado en 10 proyectos de investigación. Ha publicado 56 artículos científicos.

    A8. Paquetes de simulación

    17. Diego González Salgado (responsable). Profesor Titular (Lic. en Física) de Universidad del Área de Física Aplicada de la Universidade de Vigo. Posee 3 sexenios de investigación y 3 quinquenios de docencia. Ha participado en 15 proyectos de investigación. Ha dirigido 4 tesis doctorales y publicado 45 artículos científicos.
    18. Miguel Ángel González González.  Profesor Ayudante Doctor (Lic. en Química) de Universidad Rey Juan Carlos de Madrid. Posee 2 sexenios de investigación y 2 quinquenios de docencia. Ha participado en 10 proyectos de investigación. Ha dirigido 1 tesis doctoral y publicado 27 artículos científicos.
    19. Jesús Algaba Fernández.  Investigador posdoctoral (Lic. en Química) del Área de Ingeniería Química de Imperial College London (UK). Posee el equivalente a 1 sexenio de investigación y 1 quinquenio de docencia. Ha participado en 15 proyectos de investigación. Ha dirigido 1 tesis doctoral y publicado 20 artículos científicos.


Resultados de aprendizaje / Competencias
COMPETENCIAS BÁSICAS Y GENERALES
COMPETENCIAS BÁSICAS
CB6 Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación
CB7 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
CB8 Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios
CB9 Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
CB10 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
COMPETENCIAS GENERALES
CG1 Comprender, analizar, evaluar y seleccionar teorías científicas adecuadas y metodologías precisas para formular juicios a partir de los datos disponibles, bien sean experimentales y/o teóricos.
CG2 Demostrar dominio en la utilización de bibliografía científica y bases de datos, así como en el análisis de documentos científico-técnicos.
CG3 Comprender y ser capaz de elaborar informes, presentaciones y/o publicaciones científicas.
CG4 Comprender y ser capaz de concebir y planificar un proceso de investigación.
COMPETENCIAS TRANSVERSALES
CT2 Utilizar de manera avanzada las tecnologías de la información y la comunicación.
CT3 Gestionar la información y el conocimiento.
CT4 Comprometerse con la ética y la responsabilidad social como ciudadano y como profesional.
CT5 Definir y desarrollar el proyecto académico y profesional.
CT6 Sensibilización en temas medioambientales.
COMPETENCIAS ESPECÍFICAS
CE1 Ser capaz de trabajar en los entornos informáticos que se emplean en el contexto de la simulación molecular
CE2 Ser capaz de desarrollar scripts para realizar tareas complejas que involucren diferentes programas y comandos del sistema operativo
CE3 Ser capaz de crear estructuras algorítmicas básicas, en forma modular, en el contexto de lenguajes de programación de alto nivel
CE4 Ser capaz de desarrollar programas en lenguajes de programación de alto nivel en el contexto de la simulación molecular
CE5 Comprender los fundamentos matemáticos de los métodos de modelado más habituales y su implementación numérica computacional
CE6 Comprender las leyes macroscópicas físicas y químicas de sistemas en condiciones de equilibrio: propiedades termodinámicas y equilibrio de fases de sustancias puras y mezclas
CE7 Comprender los principios fundamentales de la Mecánica Estadística de equilibrio y no equilibrio, incluyendo propiedades termodinámicas, estructurales y dinámicas
CE8 Comprender las técnicas básicas de Monte Carlo y Dinámica Molecular basadas en potenciales de interacción molecular y ser capaz de desarrollar subrutinas y programas en el contexto de la simulación molecular
CE9 Comprender las técnicas avanzadas de Monte Carlo y Dinámica Molecular y ser capaz de crear programas que permitan determinar el comportamiento se sistemas complejos en el contexto de la simulación molecular
CE10 Dado un material, fenómeno físico o químico o sistema complejo cuyo comportamiento se quiera simular, ser capaz de analizar, valorar y decidir cuáles son las técnicas de simulación más adecuadas para predecir sus propiedades macroscópicas
CE11 Saber escribir, sintetizar, presentar los resultados científicos en papel, transparencias, posters, así como en trabajos fin de máster, tanto escrito como en presentaciones
Recursos materiales asignados

Para ver los recursos materiales asignados pulse aquí

Salidas profesionales

INFORMACIÓN SOBRE INSERCIÓN LABORAL

El Máster en Simulación Molecular es un Título Oficial eminentemente orientado hacia la carrera investigadora, y en particular, a la realización de la tesis doctoral. El título de Máster en Simulación Molecular puede, sin embargo, ayudar a los candidatos a la consecución de una mejora en la inserción laboral.

A continuación, se detallan las posibles inserciones laborales en diferentes ámbitos:

  • Contrato como investigador. Aunque también se puede enmarcar como una salida académica, en realidad, es posible optar a contratos laborales en las universidades y centros de investigación de nuestro país para la realización de tareas de investigación.
    Esto es posible hacerlo dentro del contexto de una tesis doctoral o sencillamente como investigador contratado para realizar tareas de ayuda a la investigación. Los contratos más comunes son los siguientes: (1) Contratos predoctorales de Formación del Profesorado Universitario (FPU); (2) Contratos predoctorales de Formación de Personal Investigador (FPI); (3) Contratos en el seno de proyectos de investigación; y (4) Contratos de Investigación. Véase más información sobre estos contratos en la sección “salidas académicas”.
  • Investigador en laboratorios I+D+i de empresas tecnológicas. Otra opción interesante son los departamentos I+D+I o laboratorios de investigación de grandes empresas. Aunque son poco comunes en nuestro país, en otros de nuestro entorno suele ser posible la contratación de personal experto en determinados campos del conocimiento, como la Simulación Molecular. Aunque se suele exigir el grado de doctor, es posible acceder a estos puestos si se tiene una formación sólida en algún campo del saber, como puede ser el caso del Máster en Simulación Molecular.
  • Profesor Sustituto Interino (PSI). La universidad española contempla la posibilidad de contratar a profesorado sustituto durante periodos concretos. Estar en posesión del Título de Máster facilita, a nivel de currículum, la posibilidad de acceder a dichos puestos de trabajo.
  • Preparación de oposiciones al Cuerpo de Profesores de Secundaria (funcionariado).
    Finalmente, la posesión de un Título de Máster, permite obtener puntos en las convocatorias oficiales de oposiciones para profesores de secundaria y bachillerato.
Salidas académicas

INFORMACIÓN SOBRE SALIDAS ACADÉMICAS

El Máster en Simulación Molecular es un Título Oficial eminentemente orientado hacia la carrera investigadora en el mundo académico. En nuestro país y entorno cercano, el ingreso en la academia exige la realización de una tesis doctoral en un campo determinado. Para ello, es preciso llevar a cabo una formación muy especializada durante aproximadamente 4 años, que comienza con la obtención de un título de Máster.
La realización de una tesis doctoral, que es claramente una salida académica a la realización de un Máster en su vertiente investigadora, también lleva asociada una inserción laboral temporal, ya que hoy en día, el periodo predoctoral se lleva a cabo en las universidades o centros de investigación del Consejo Superior de Investigaciones
Científicas (CSIC) a través de un contrato laboral.
A continuación, se enumeran los tipos de contratos laborales más comúnmente empleados para llevar a cabo una tesis doctoral, y que constituyen una de las primeras salidas académicas, y también laborales, de los egresados del Máster en Simulación Molecular:

  • Contratos predoctorales de Formación del Profesorado Universitario (FPU)Son contratos muy competitivos ofertados anualmente a nivel nacional, y por áreas de conocimiento, para optar a un puesto de trabajo para la realización de la tesis doctoral. Aunque no es obligatorio disponer de una titulación de máster, es prácticamente imposible optar a un contrato de este tipo sin este título.
  • Contratos predoctorales de Formación de Personal Investigador (FPI). Son contratos similares a los contratos FPU, pero se ofertan desde proyectos de investigación concedidos a los grupos de investigación de todas las áreas de conocimiento. Sus características son similares a las FPU, aunque la competencia es menor. Como en el caso anterior, la posesión de un título de máster puede permitir conseguir ganar el contrato con más facilidad.
  • Proyectos de investigación. En muchas ocasiones, proyectos de investigación procedentes de diferentes organismos (europeos, nacionales, autonómicos, planes propios de investigación de universidades, etc.), permiten la contratar de personal de investigación no doctor. Poseer un título de máster especializado, en este caso en Simulación Molecular, ofrece mayores posibilidades de acceder al contrato.
  • Contratos de Investigación. Los proyectos de investigación llevados a cabo en colaboración con empresas se llevan a cabo en nuestro país dentro del contexto de los contratos 68/83 (Ley Orgánica de Universidades). Aunque no necesariamente, son una vía de financiación para la formación de doctores. Este tipo de contratos permiten la contratación de personal investigador doctor y no doctor. En el caso de los no doctores, la posesión del título de máster en el campo especializado supone mayores posibilidades de contratación.
  • Doctorado. https://www.uhu.es/escuela-doctorado/titulaciones/pd-en-ciencia-y-tecnologia-industrial-y-ambiental
Comisiones

Composición de la Comisión de seguimiento del Convenio:

  • Dra. Encarnación Mellado Durán. Vicerrectora de Formación Reglada y Títulos Propios. Universidad Internacional de Andalucía.
  • Dra. Beatriz Aranda Louvier. Vicerrectora de Ordenación Académica, Grado y Postgrado. Universidad de Huelva.

 Composición de la Comisión Académica:

  • Dr. Felipe Jiménez Blas. Presidente. Universidad de Huelva.
  • Dr. Jesús Algaba Fernández. Secretaria. Imperial College London.
  • Dr. José Manuel Míguez Díaz. Vocal. Universidad de Huelva.
  • Dr. Luis González MacDowell. Vocal. Universidad Complutense de Madrid.
  • Dr. Enrique Lomba García. Vocal. Instituto de Química Física Rocasolano (IQFR/CSIC).
  • Dr. José Manuel Romero Enrique. Vocal. Universidad de Sevilla.
  • Dra. Eva González Noya. Vocal. Instituto de Química Física Rocasolano (IQFR/CSIC).
  • Dr. Sergio Andrés Mejía Matallama. Vocal. Universidad de Concepción.
  • Dr. Diego González Salgado. Vocal. Universidad de Vigo.
  • Dr. Julio Largo Maeso. Vocal. Universidad de Cantabria.
  • Dr. Manuel Martínez Piñeiro. Vocal. Universidad de Vigo.
  • Dr. Alessandro Patti. Vocal. Universidad de Granada.
  • Dr. Miguel Ángel González González. Vocal. Universidad Rey Juan Carlos.
  • Dra. Paula Gómez Álvarez. Vocal. Universidad de Huelva.
  • Dra. María del Carmen Sánchez Carrillo. Invitada. Universidad de Huelva

Composición de la Comisión de Garantía de Calidad del Académica: 

  • Dr. Felipe Jiménez Blas. Responsable del sistema de garantía de calidad.  Universidad de Huelva.
  • Dr. Manuel Martínez Piñeiro. Representante del profesorado. Universidad de Vigo.
  • Dr. Jesús Algaba Fernández. Representante del profesorado. Imperial College London.
  • Dr. Ignacio Moreno-Ventas Bravo. Universidad de Huelva.
  • Dª. María del Mar Peinado Gallego. Representante del PAS. Universidad Internacioanal de Andalucía.
  • D. Javier Oller Iscar. Representante del alumnado.
Mecanismos de coordinación del título

Coordinación de la titulación: 

Dr. Felipe Jiménez Blas. Universidad de Huelva.

Dr. José Manuel Míguez Díaz. Universidad de Huelva.

Para conseguir los objetivos docentes marcados en esta memoria y garantizar que los estudiantes adquieran las competencias previstas en el Título, es necesaria una correcta coordinación entre la Dirección del Máster, la Comisión Académica del mismo, los coordinadores de cada Universidad participante, los coordinadores de módulos y asignaturas, el tutor orientador y el director del Trabajo Fin de Máster. Para ello, se prevén los mecanismos de coordinación que se detallan a continuación:

1. Comisión Académica del Máster.

Estará constituida por un representante de cada una de las universidades participantes en el Máster, un representante externo y un representante de los alumnos, y presidida por el director del Máster. La Comisión Académica del Máster asumirá la responsabilidad académica delmismo, encargándose de supervisar el desarrollo de los contenidos de materias y asignaturas. Para ello, coordinará el trabajo entre los distintos coordinadores de módulos y los coordinares de cada asignatura, dentro de los mismos módulos y en diferentes.

Del mismo modo, también supervisará el desarrollo de los procesos básicos de la enseñanza a distanciacon teledocencia y del uso del Moodle del Campus Virtual de la UNIA. Para ello, recabará los preceptivos informes al Área de Innovación Docente y Digital de la UNIA, para conocer el ritmo de entradas y participación en el Campus Virtual de profesores y alumnos. Además, asumirá los procesos de admisión del alumnado y realizará la adscripción de un Tutor orientador para cada alumno matriculado en el programa.

2. Coordinador de la Universidad.

Cada universidad designará a un profesor que representará a su Universidad en la Comisión Académica y que actuará como coordinador de los profesores procedentes de la misma y como mediador en los asuntos relacionadas con la aplicación de las normativas correspondientes a su Universidad, atendiendo particularmente a los alumnos matriculados en ella. Por carecer de una plantilla propia de profesores, la representación de la UNIA, a estos efectos, será ejercida por el director del Máster.

3. Coordinadores de módulo.

Cada módulo dispondrá de un coordinador que supervisará el desarrollo de los temarios de las asignaturas del módulo conforme a los descriptores previstos de cada asignatura, coordinando los contenidos entre los distintos profesores de las asignaturas del mismo módulo para evitar superposiciones o carencias de contenido.

Cada coordinador de módulo se reunirá con los responsables de cada asignatura entre tres momentos:

  1. Al inicio de cada asignatura ( semanas 1 y 9 del cuatrimestre correspondiente );
  2. en la semana intermedia de impartición de las asignaturas correspondientes (semanas 4 y 12 del cuatrimestre correspondiente ); y
  3. al finalizar la docencia correspondiente (semanas 8 y 16 correspondientes).

Asimismo, los coordinadores de cada módulo se coordinarán entre sí para que los objetivos de cada uno de ellos se cumplan y de este modo asegurar la correcta impartición de todos los contenidos previstos.Asimismo, los coordinadores de los módulos se reunirán también entre sí en los mismos momentos (semanas 1, 4 y 8 de cada asignatura), para que, no solo la coordinación horizontal, sino también la vertical sea adecuada para la correcta impartición del Título en todo momento.

4. Coordinadores de asignatura.

Cada asignatura dispondrá de un coordinador que supervisará el desarrollo de los temarios conforme a los descriptores previstos de cada asignatura, actuando como coordinador de los distintos profesores que intervendrán en la asignatura para evitar superposiciones o carencias de contenido.

El coordinador se reunirá con los profesores de la asignatura que coordina en tres momentos, de modo similar a como lo hará cada coordinador de módulo con los responsables de las asignaturas:

  1. Al inicio de cada asignatura (semanas 1 y 9 del cuatrimestre correspondiente);
  2. en la semana intermedia de impartición de las asignaturas correspondientes (semanas 4 y 12 del cuatrimestre correspondiente); y
  3. al finalizar la docencia correspondiente (semanas 8 y 16 correspondientes).

El coordinador de la asignatura mediará en la resolución de potenciales conflictos entre los estudiantes y el profesorado, y proporcionará información puntual sobre los mecanismos de evaluación de la asignatura.

5. Tutores orientadores.

Una vez efectuada la admisión y preinscripción de los estudiantes, la Comisión Académica les asignará un Tutor para que asuma funciones básicas de asesoramiento, orientación e información personalizada acerca de la estructura académica del Máster y los contenidos de la oferta formativa

Instituciones participantes

Subir

Matrícula y becas

El periodo de preinscripción y matrícula abarca diferentes fases a lo largo del año, dependiendo del calendario del Distrito Único Andaluz.

Situación actual del máster:

  • en docencia

Conoce nuestro propio programa de becas para másteres oficiales y consulta en las bases de la convocatoria los casos donde la beca contempla exención de precios o una ayuda económica.

Subir

Sistema de Garantía de Calidad

Criterios específicos en el caso de extinción del título

Criterios específicos en el caso de extinción del título.

La UNIA, en su Sistema de Garantía de Calidad, presenta un procedimiento denominado “P09. Suspensión del título”


Subir
Cursos académicos
Subir
Te puede interesar...
image placeholder

Taller de Formación Docente- Trabajando en el Aula el Potencial del Alumnado con Altas Capacidades

Formación continua
1 ECTS
Virtual
Inicio: 17 Enero 2024

Jornada sobre el Parque Nacional Sierra de las Nieves

Formación continua
7 horas
Presencial
Inicio: 24 Noviembre 2023

Curso de especialización teórico sobre infraestructuras eléctricas y conservación de la fauna silvestre: impactos, prevención y medidas correctoras

Formación continua
10 horas
Virtual
Inicio: 30 Noviembre 2023